Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Highly biodegradable fluoroquinolone derivatives designed using the 3D-QSAR model and biodegradation pathways analysis.

Identifieur interne : 000022 ( Main/Exploration ); précédent : 000021; suivant : 000023

Highly biodegradable fluoroquinolone derivatives designed using the 3D-QSAR model and biodegradation pathways analysis.

Auteurs : Yilin Hou [République populaire de Chine] ; Yuanyuan Zhao [République populaire de Chine] ; Qing Li [République populaire de Chine] ; Yu Li [République populaire de Chine]

Source :

RBID : pubmed:31954922

Descripteurs français

English descriptors

Abstract

A three-dimensional quantitative structure-activity relationship (3D-QSAR) model was established based on molecular structures and docking scores (representing the biodegradability); the scores were obtained for 23 fluoroquinolones (FQs) and the oxidoreductase (PDB ID: 1YZP) of Phanerochaete chrysosporium in the aerobic process of municipal wastewater treatment plants. In the Comparative Molecular Field Analysis (CoMFA) model, q2 was 0.516 and r2pred was 0.727, which showed that the model was reliable and robust. The modification information obtained by the contour maps showed that introducing electronegative, bulky or electropositive groups at different active sites could increase the biodegradability of fluoroquinolone derivatives. Using levofloxacin (LEV) as a modified molecule, 35 fluoroquinolone derivatives with higher biodegradability than LEV were designed. After the evaluation of genotoxicity, bioconcentration and photodegradation, Derivative-15, with higher biodegradability (increased by 27.85%), higher genotoxicity, higher photodegradation and lower bioconcentration, was identified as the most environmentally friendly fluoroquinolone derivative. The 2D-QSAR model of FQ biodegradability was established through the quantization parameters, and q+ was identified as the main parameter affecting the biodegradability of FQs through sensitivity analysis. In addition, the docking results of LEV and Derivative-15 with the oxidoreductase in P. chrysosporium showed that the electrostatic field force between Derivative-15 and the amino acid residues promoted the binding of the donor to the receptor protein, thereby increasing the biodegradability of Derivative-15. Additionally, molecular dynamics simulations revealed that the enhancement of the electrostatic field force with Derivative-15 could promote the binding of the ligand to the receptor, which was basically consistent with the conclusion of molecular docking. Finally, the three microbial degradation pathways of LEV and Derivative-15 were also proposed. The total energy barrier value of the pathway with the lowest total energy barrier of biodegradation was reduced by 32.07%, which was basically consistent with the enhancement of biodegradability of Derivative-15.

DOI: 10.1016/j.ecoenv.2020.110186
PubMed: 31954922


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Highly biodegradable fluoroquinolone derivatives designed using the 3D-QSAR model and biodegradation pathways analysis.</title>
<author>
<name sortKey="Hou, Yilin" sort="Hou, Yilin" uniqKey="Hou Y" first="Yilin" last="Hou">Yilin Hou</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China. Electronic address: hylshinanshen95@outlook.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206</wicri:regionArea>
<wicri:noRegion>102206</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Yuanyuan" sort="Zhao, Yuanyuan" uniqKey="Zhao Y" first="Yuanyuan" last="Zhao">Yuanyuan Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China. Electronic address: zyy950210@outlook.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206</wicri:regionArea>
<wicri:noRegion>102206</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Qing" sort="Li, Qing" uniqKey="Li Q" first="Qing" last="Li">Qing Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China. Electronic address: lq0226@outlook.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206</wicri:regionArea>
<wicri:noRegion>102206</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Yu" sort="Li, Yu" uniqKey="Li Y" first="Yu" last="Li">Yu Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China. Electronic address: liyuxx8@hotmail.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206</wicri:regionArea>
<wicri:noRegion>102206</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31954922</idno>
<idno type="pmid">31954922</idno>
<idno type="doi">10.1016/j.ecoenv.2020.110186</idno>
<idno type="wicri:Area/Main/Corpus">000029</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000029</idno>
<idno type="wicri:Area/Main/Curation">000029</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000029</idno>
<idno type="wicri:Area/Main/Exploration">000029</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Highly biodegradable fluoroquinolone derivatives designed using the 3D-QSAR model and biodegradation pathways analysis.</title>
<author>
<name sortKey="Hou, Yilin" sort="Hou, Yilin" uniqKey="Hou Y" first="Yilin" last="Hou">Yilin Hou</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China. Electronic address: hylshinanshen95@outlook.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206</wicri:regionArea>
<wicri:noRegion>102206</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Yuanyuan" sort="Zhao, Yuanyuan" uniqKey="Zhao Y" first="Yuanyuan" last="Zhao">Yuanyuan Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China. Electronic address: zyy950210@outlook.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206</wicri:regionArea>
<wicri:noRegion>102206</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Qing" sort="Li, Qing" uniqKey="Li Q" first="Qing" last="Li">Qing Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China. Electronic address: lq0226@outlook.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206</wicri:regionArea>
<wicri:noRegion>102206</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Yu" sort="Li, Yu" uniqKey="Li Y" first="Yu" last="Li">Yu Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China. Electronic address: liyuxx8@hotmail.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206</wicri:regionArea>
<wicri:noRegion>102206</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecotoxicology and environmental safety</title>
<idno type="eISSN">1090-2414</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (enzymology)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Fluoroquinolones (chemistry)</term>
<term>Fluoroquinolones (pharmacokinetics)</term>
<term>Fluoroquinolones (toxicity)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Docking Simulation (MeSH)</term>
<term>Molecular Dynamics Simulation (MeSH)</term>
<term>Molecular Structure (MeSH)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Quantitative Structure-Activity Relationship (MeSH)</term>
<term>Water Pollutants, Chemical (chemistry)</term>
<term>Water Pollutants, Chemical (pharmacokinetics)</term>
<term>Water Pollutants, Chemical (toxicity)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basidiomycota (enzymologie)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Fluoroquinolones (composition chimique)</term>
<term>Fluoroquinolones (pharmacocinétique)</term>
<term>Fluoroquinolones (toxicité)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Polluants chimiques de l'eau (composition chimique)</term>
<term>Polluants chimiques de l'eau (pharmacocinétique)</term>
<term>Polluants chimiques de l'eau (toxicité)</term>
<term>Relation quantitative structure-activité (MeSH)</term>
<term>Simulation de docking moléculaire (MeSH)</term>
<term>Simulation de dynamique moléculaire (MeSH)</term>
<term>Structure moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Fluoroquinolones</term>
<term>Oxidoreductases</term>
<term>Water Pollutants, Chemical</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Fluoroquinolones</term>
<term>Oxidoreductases</term>
<term>Polluants chimiques de l'eau</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacocinétique" xml:lang="fr">
<term>Fluoroquinolones</term>
<term>Polluants chimiques de l'eau</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Fluoroquinolones</term>
<term>Water Pollutants, Chemical</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Fluoroquinolones</term>
<term>Water Pollutants, Chemical</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Fluoroquinolones</term>
<term>Polluants chimiques de l'eau</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Models, Molecular</term>
<term>Molecular Docking Simulation</term>
<term>Molecular Dynamics Simulation</term>
<term>Molecular Structure</term>
<term>Quantitative Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dépollution biologique de l'environnement</term>
<term>Modèles moléculaires</term>
<term>Relation quantitative structure-activité</term>
<term>Simulation de docking moléculaire</term>
<term>Simulation de dynamique moléculaire</term>
<term>Structure moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A three-dimensional quantitative structure-activity relationship (3D-QSAR) model was established based on molecular structures and docking scores (representing the biodegradability); the scores were obtained for 23 fluoroquinolones (FQs) and the oxidoreductase (PDB ID: 1YZP) of Phanerochaete chrysosporium in the aerobic process of municipal wastewater treatment plants. In the Comparative Molecular Field Analysis (CoMFA) model, q
<sup>2</sup>
was 0.516 and r
<sup>2</sup>
<sub>pred</sub>
was 0.727, which showed that the model was reliable and robust. The modification information obtained by the contour maps showed that introducing electronegative, bulky or electropositive groups at different active sites could increase the biodegradability of fluoroquinolone derivatives. Using levofloxacin (LEV) as a modified molecule, 35 fluoroquinolone derivatives with higher biodegradability than LEV were designed. After the evaluation of genotoxicity, bioconcentration and photodegradation, Derivative-15, with higher biodegradability (increased by 27.85%), higher genotoxicity, higher photodegradation and lower bioconcentration, was identified as the most environmentally friendly fluoroquinolone derivative. The 2D-QSAR model of FQ biodegradability was established through the quantization parameters, and q
<sup>+</sup>
was identified as the main parameter affecting the biodegradability of FQs through sensitivity analysis. In addition, the docking results of LEV and Derivative-15 with the oxidoreductase in P. chrysosporium showed that the electrostatic field force between Derivative-15 and the amino acid residues promoted the binding of the donor to the receptor protein, thereby increasing the biodegradability of Derivative-15. Additionally, molecular dynamics simulations revealed that the enhancement of the electrostatic field force with Derivative-15 could promote the binding of the ligand to the receptor, which was basically consistent with the conclusion of molecular docking. Finally, the three microbial degradation pathways of LEV and Derivative-15 were also proposed. The total energy barrier value of the pathway with the lowest total energy barrier of biodegradation was reduced by 32.07%, which was basically consistent with the enhancement of biodegradability of Derivative-15.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31954922</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1090-2414</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>191</Volume>
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Ecotoxicology and environmental safety</Title>
<ISOAbbreviation>Ecotoxicol Environ Saf</ISOAbbreviation>
</Journal>
<ArticleTitle>Highly biodegradable fluoroquinolone derivatives designed using the 3D-QSAR model and biodegradation pathways analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>110186</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0147-6513(20)30025-7</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ecoenv.2020.110186</ELocationID>
<Abstract>
<AbstractText>A three-dimensional quantitative structure-activity relationship (3D-QSAR) model was established based on molecular structures and docking scores (representing the biodegradability); the scores were obtained for 23 fluoroquinolones (FQs) and the oxidoreductase (PDB ID: 1YZP) of Phanerochaete chrysosporium in the aerobic process of municipal wastewater treatment plants. In the Comparative Molecular Field Analysis (CoMFA) model, q
<sup>2</sup>
was 0.516 and r
<sup>2</sup>
<sub>pred</sub>
was 0.727, which showed that the model was reliable and robust. The modification information obtained by the contour maps showed that introducing electronegative, bulky or electropositive groups at different active sites could increase the biodegradability of fluoroquinolone derivatives. Using levofloxacin (LEV) as a modified molecule, 35 fluoroquinolone derivatives with higher biodegradability than LEV were designed. After the evaluation of genotoxicity, bioconcentration and photodegradation, Derivative-15, with higher biodegradability (increased by 27.85%), higher genotoxicity, higher photodegradation and lower bioconcentration, was identified as the most environmentally friendly fluoroquinolone derivative. The 2D-QSAR model of FQ biodegradability was established through the quantization parameters, and q
<sup>+</sup>
was identified as the main parameter affecting the biodegradability of FQs through sensitivity analysis. In addition, the docking results of LEV and Derivative-15 with the oxidoreductase in P. chrysosporium showed that the electrostatic field force between Derivative-15 and the amino acid residues promoted the binding of the donor to the receptor protein, thereby increasing the biodegradability of Derivative-15. Additionally, molecular dynamics simulations revealed that the enhancement of the electrostatic field force with Derivative-15 could promote the binding of the ligand to the receptor, which was basically consistent with the conclusion of molecular docking. Finally, the three microbial degradation pathways of LEV and Derivative-15 were also proposed. The total energy barrier value of the pathway with the lowest total energy barrier of biodegradation was reduced by 32.07%, which was basically consistent with the enhancement of biodegradability of Derivative-15.</AbstractText>
<CopyrightInformation>Copyright © 2020 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hou</LastName>
<ForeName>Yilin</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China. Electronic address: hylshinanshen95@outlook.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Yuanyuan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China. Electronic address: zyy950210@outlook.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Qing</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China. Electronic address: lq0226@outlook.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yu</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China. Electronic address: liyuxx8@hotmail.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Ecotoxicol Environ Saf</MedlineTA>
<NlmUniqueID>7805381</NlmUniqueID>
<ISSNLinking>0147-6513</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024841">Fluoroquinolones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014874">Water Pollutants, Chemical</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024841" MajorTopicYN="N">Fluoroquinolones</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="Y">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062105" MajorTopicYN="N">Molecular Docking Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="N">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015394" MajorTopicYN="N">Molecular Structure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021281" MajorTopicYN="N">Quantitative Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014874" MajorTopicYN="N">Water Pollutants, Chemical</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Biodegradation</Keyword>
<Keyword MajorTopicYN="N">Fluoroquinolones</Keyword>
<Keyword MajorTopicYN="N">Molecular docking</Keyword>
<Keyword MajorTopicYN="N">Molecular dynamics</Keyword>
<Keyword MajorTopicYN="N">Molecular modification</Keyword>
<Keyword MajorTopicYN="N">QSAR</Keyword>
</KeywordList>
<CoiStatement>Declaration of competing interest None.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31954922</ArticleId>
<ArticleId IdType="pii">S0147-6513(20)30025-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.ecoenv.2020.110186</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Hou, Yilin" sort="Hou, Yilin" uniqKey="Hou Y" first="Yilin" last="Hou">Yilin Hou</name>
</noRegion>
<name sortKey="Li, Qing" sort="Li, Qing" uniqKey="Li Q" first="Qing" last="Li">Qing Li</name>
<name sortKey="Li, Yu" sort="Li, Yu" uniqKey="Li Y" first="Yu" last="Li">Yu Li</name>
<name sortKey="Zhao, Yuanyuan" sort="Zhao, Yuanyuan" uniqKey="Zhao Y" first="Yuanyuan" last="Zhao">Yuanyuan Zhao</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000022 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000022 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31954922
   |texte=   Highly biodegradable fluoroquinolone derivatives designed using the 3D-QSAR model and biodegradation pathways analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31954922" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020